
Mining Repositories for Verification and Validation of ROS-based
apps

Current Version: 1.1.0
Current Date: 20-07-2023

Investigators: Matei Schiopu, Ricardo Caldas, Thorsten Berger, Patrizio Pelliccione

The code used to mine the repositories is available online: https://github.com/SchiopuMatei/Chalmers-
ROS-RM-FT-Datamining/blob/master/README.md.

1 Introduction

Charting ROS project architecture from a software engineering perspective is a task that requires both a
thorough study of the state-of-the-art publications, and a broad view of the current methods and needs
of ROS developer teams. A strong connection to the current project landscape is needed to define
guidelines that may bring value to the field as a whole. In this paper we will showcase our approach to
tackling this and establishing a link to the ROS ecosystem, as it is represented by the communities who
actively develop it, using data mining.

The first part of our approach involves creating a dataset of projects by pooling public ROS projects
from across GitHub, Bitbucket, and GitLab, and curating them to remove noise and low-relevance items,
we establish the area from which we will extract exemplars for our guidelines. The principal issue in this
undertaking is the vastness of the material we are trying to cover. Attempting to investigate each project
individually by examining each file would take inordinate amounts of time, and require us to restrict the
scope to a handful of projects which may not be representative of the actual ongoing trends in ROS
development. Thus, we employ further data mining techniques to cover as many projects as possible
and give each of them a chance to assert their trends within a certain development topic. We can
search and extract large batches of code snapshots from the entire dataset by extracting keywords from
the guideline topics from their description and methods. This enables us to quickly find trends in library
and tool usage within the ROS environment. Once a usage trend is detected, the code of the project
undertakes further examination and is then subject to a peer review process to determine the validity of
the results and under which guidelines they may be classified.

2 Methodology

This section describes how we derived exemplars for the guidelines from online repositories in GitHub.
Figure 1 depicts the process of deriving examples of patterns, tools, and techniques for facilitating and
performing runtime verification and field-based testing of ROS-based applications.

2.1 Phase 1: Mining repositories

The mining project was initialized starting from the ’Mining guidelines for architecting robotics software’
by Malavolta’s replication package[1]. The main element used from the packages was the rosmap1

implementation, a tool designed for dependency mapping, which allowed the gathering of an exhaustive
list of all public ROS projects available on Github, as well as Bitbucket and Gitlab.

Python scripts from the replication package were implemented and modified. The ’explorer.py’ script
combines the separate sources into one monolithic link basket while also filtering out forked repos,
duplicates, repos with low amounts of commits (less than 100), repos with low star count (less than 2
stars), and demo projects which have low relevance and no exposed primary source code, excluding
any projects using the word ’demo’ in the description or name of the project.

The final part of the script array is ’cloner.py’ which takes the monolithic curated json file containing
pointers to the projects, and the result of the previous script, and downloads them locally to a research
server provided by RUB. The local setup allows for quick targeted searches inside the source files of
mature projects, with a high degree of search-term flexibility, and ensures replication in the long term,

1https://github.com/jr-robotics/rosmap

1

https://github.com/SchiopuMatei/Chalmers-ROS-RM-FT-Datamining/blob/master/README.md
https://github.com/SchiopuMatei/Chalmers-ROS-RM-FT-Datamining/blob/master/README.md
https://github.com/jr-robotics/rosmap


Figure 1: Overview of the activities to gather exemplars for the guidelines

solving the issues of projects transitioning from open-source to private repositories in the future or any
repository deletions or migrations.

Table 1: Inclusion (I) and Exclusion (E) criteria to preliminary repository selection
ID Criteria description

I1 Contains ROS python launch files for a standalone application or framework
I2 Contains code fit for deployment on a ROS system
I3 Contains test artifacts included in main code or as part of testing stack
I4 Contains quality assurance and mapping instruments for ROS systems

E1 Contains only simulations or simulation plugins (Webots, Gazebo)
E2 Contains course material or is part of a tutorial project
E3 Contains clearly deprecated or incomplete, nonfunctional code
E4 Contains only a demo of an unfinished concept or experimental code
E5 Contains clearly duplicate code of another included repository
E6 Contains only a reference to another library or repository
E7 Contains no form of documentation or instructions
E8 Contains descriptions and comments not written in English

Table 2: Inclusion (I) and Exclusion (E) criteria to peer review
ID Criteria description

I1 Adequately fits the scope of a given guideline
I2 Contains scientific documentation like articles or papers supporting a guideline

E1 Contains only tangentially relevant content
E2 Contains inconclusive or otherwise vague documentation
E3 Project is found to have lacked maintenance for more than 10 years

Phase 1 results in a set of 938 repositories downloaded to a server in RUB where we can further
query and analyse each repository.

2



2.2 Phase 2: Finding Exemplars

The curated repositories are then inspected by the research team. For the manual search, the UNIX
’grep’ utility allowed for the efficient scanning of large amounts of files. The process would start with
analyzing each guideline and research any provided exemplars to retrieve pointers and markers which
indicate the exemplar is being utilized in repository code, and then search for these signs through
the mass of downloaded repos. In addition, especially for guidelines missing exemplars, we would
also search for exemplars by looking up keywords relevant to the guideline and examining code com-
ments within the repos (i.e. LLVM LibFuzzer, found while looking for fuzzing mechanisms, used by
PX4 Firmware, a large opensource autopilot project).

Utilizing ’grep’, researchers would map out usages, listing out which and how many projects are
making use of an exemplar, and further inspecting the lines of code for matched results in order to
ensure relevance and filter out false positives manually. The same code line inspecting process was
used for discovering new exemplars utilizing keywords from interest areas and examining peripheral
code from already-established exemplars.

The search method consisted of two steps: File Search and Code Examination. In order to acceler-
ate the process of reviewing the code of the 938 repositories, an initial probe for usages is carried out
during the File Search.
File search command example:

$ grep − R i l ” keyword ” −− inc lude =* .{ cpp , c , py} −−binary − f i l e s =wi thout −match

The ’-R’ setting reads all files under each directory, recursively, following any symbolic links. The ’-i’
setting ignores case. The ’-l’ option swaps the output from matched text to the full paths of files where
matches were found.

In order to speed up the search and target it towards more relevant areas we utilize’–include=*.cpp,c,py’,
which restricts it to certain file types, and ’–binary-files=without-match’, which ignores strictly binary files
such as images, .tar archives, videos and other media. The processing of binary files provides no rel-
evant content due to their non-human-readable nature, and slows down the search heavily due to the
large size of the files.

For the case of domain-specific languages (DSLs), the use of exclusion filters allowed us to filter
common programming language elements and focus on exotic examples with DSL implementations.
(i.e. RML utilized by ROSMonitoring in .rml files, RCL ROSContractLanguage)

Example of an exclusion filter: –exclude=*.cpp,c,py,h,hpp
Code examination command:

$ grep −Ri −A 10 −B 10 ” keyword ” −− inc lude =* .{ cpp , c , py}
\\ −−binary − f i l e s =wi thout −match

The ’-A x’ and ’-B y’ options convert the output from single matched lines to a contextual snapshot
of the code, displaying ’x’ lines of code above and ’y’ lines of code below the match.

Following a successful file search, the matched files undergo a preliminary examination in the ’Code
examination’ phase. By viewing the matched lines, the file structure and projects to which they belong,
and code snippets around the matched area, the examining researchers can discard any false positives
and irrelevant findings according to the given criteria. The remaining projects can then be subject to
deeper code examination, which is then brought up in peer-review sessions where the research team
determines if a viable exemplar has been discovered for the corresponding guideline.

3 Results

We have inspected 15 guideline descriptions and found 29 new exemplars comprising code repositories,
language specifications and ROS native and external libraries.

Official libraries come packaged with the ROS and ROS2 suite and are universally well-documented
and well-maintained, with some receiving several major updates per year and multiple commits monthly.
They also feature some of the highest usage and appearance rates within the scanned projects, being
widely used. However, this is not always the case, as effective and sophisticated methods and libraries
go entirely unused in many projects where their presence would have greatly benefited in improving the
quality of the development process or the end product itself.

Unofficial libraries vary widely in quality and maintenance. Within the scope of the study we have
taken quality control measures in the form of our acceptance criteria to ensure only active and fresh

3



exemplars are being considered. Even so, they are mostly surpassed by the official libraries when it
comes to activity.

This is also a direct effect of the open-source nature of ROS. When an unofficial extension is de-
veloped and gains popularity, it is quickly endorsed and then assimilated into the official architecture,
getting assigned constant maintainers even if the initial development team becomes inactive at some
point in the future. Unofficial projects provide the basis for open-source development and are the main
contributors to the furthering of the ROS toolkit, besides maintainers. They are often highly experimental
and try to resolve issues within the topic or explore new development paradigms.

Standalone tools differ from the other categories in that they do not directly interface with ROS
project code, and instead provide services by attaching externally. The interfacing can take the form of
node subscribers, file analyzers, server API, different combinations of these methods, and many more.
The usual objective of these exemplars is to provide value to the development environment in the form
of debugging, visualization, and other methods. They ultimately provide indispensable aid to developer
teams by speeding up the bugfixing process and giving accessible insights into the project as a whole,
from what might have otherwise been gigabytes of unreadable logs and recordings.

Guideline Keywords Exemplars

C1. Identify timing constraints

”Autoware Perf”,
”AutowarePerf”,
”seams18”,
”seams”
”rtamt4ros”
”throttling”
”throttle”

ros-tooling/topic tools

C2. Identify security and privacy
constraints

”SROS”
”ROSRV”
”encrypt”,
”encryption”,
”public-key”,
”private-key”

SROS2

C3. Identify safety constraints
”safeguard”
”safety check”
”safecheck”

No new exemplars found

CD1. Strive for ROS nodes with
single responsibility

”bsn”,
”skiros2”,
”skiros”
”hmrs mission control”,
”hmrs”,
”mission control”,
”mission control”,
”node”

No new exemplars found

CD2. Ensure global time monotonicity
of events and states

”ros2-picas”,
”picas”
”mavros”
”timestamp” (in .msg files)
”SteadyTime”
”steady clock”

ros::SteadyTime
std::chrono::steady clock

I1. Provide an API for querying and
updating internal lifecycle

”rclc lifecycle”,
”lifecycle node”,
”rclcpp”,
”mode” def in .yaml files,
api methods
(”getState”, ”changeMode”)

No new exemplars found

4



I2. Provide an API for logging
and filtering

”ROS DEBUG”,
”ROS INFO”,
”ROS WARN”,
”ROS ERROR”,
”ROS FATAL”,
”rosrescue”
”rclpy.logging”
”rospy.logerr”
”rcutils”
”logging macros.h”

Native ROS logging functions
Rosrescue
rclpy.logging
rospy.logerr
rcutils/logging macros.h

I3. Provide an API for injecting
faults in execution scenarios

”fuzzer”, ”fuzz”
”fault injection”
”imfit”, ”im-fit”
”camfitool”, ”camfit”

LLVM LibFuzzer
ROS rcutils library
”rcutils/testing/fault injection.h”
Software-Fault-Injection-Tool-IM-FIT
camfitool

I4. Isolate components for testing

”throttle”,
”throttler”
”throttle node”
”message throttle”

ros-tooling/topic tools
dheera/ros-synchronized-throttle
UTNuclearRoboticsPublic/rosthrottle
proboticks/dynamic topic tools

Guideline Keywords Exemplars

SDB1. Define properties using a
logic-based language

Logic and
temporal logic symbols
(¬, ∃,∀,∧,∨,⊥, etc.)

No new exemplars found

SDB2. Use Domain Specific Languages (DSLs)
to specify properties

”property”,
”constraint”,
”precondition”,
”postcondition”,
”invariant”,
”assertion”
Exclude: *.cpp,c,py,h,hpp

No new exemplars found

SDB3. Use languages and tools to
scenario-based specification of
test cases

”contract”,
”contract language”
Exclude: *.cpp,c,py,h,hpp

ROS Contract language (RCL)

PE1. Understand the overhead
acceptance criteria No new exemplars found

PE2. Create models for runtime
assessment No new exemplars found

MTA1. Improve the robustness of
the system by performing noise
and fault injection

”fuzzer”, ”fuzz”
”fault injection”
”imfit”, ”im-fit”
”camfitool”, ”camfit”

LLVM LibFuzzer
ROS rcutils library
”rcutils/testing/fault injection.h”
Software-Fault-Injection-Tool-IM-FIT
camfitool

MTA2. Exploit automation for test
case generation, test case
prioritization and selection, oracle
and monitor generation

No new exemplars found

5



AR1. Perform postmortem analysis to
diagnose non-passing test cases

”robot localization”,
”aggregator”
”diagnostic”
”diagnostic monitor”

robot localization,
diagnostic aggregator
diagnostic updater
diagnostics monitors

AR2. Use reliable tooling in order to
manage field data

”mongodb store”,
”warehouse ros”

mongodb store
warehouse ros mongo
warehouse ros sqlite

SE1. Use record-and-replay when
performing exploratory field tests No new exemplars found

SE2. No GUIs! Prioritize headless
simulation No new exemplars found

Table 4: This table defines and maps guidelines to exemplars
found using the repository mining technique

4 Discussion

When searching for usage of provided exemplars, due to the nature of QA and development environ-
ment tools, many are attached externally to a project, without any code changes or additions to the
projects themselves on their repositories. These consist mostly of tools installed directly on a ROS
machine which and then attach to a process or run in parallel as a ROS add-on (i.e. SROS security
package, which when added on a ROS machine it handles all the key exchanges and encryption on any
connections that form with the machine). Regarding these exemplars, there is no reliable code-wise
method to find out if they are utilized without an author explicitly stating in the project description or
questioning the project teams on their development and testing practices and processes. These testing
applications are likely found only in the development environment, if at all, and not outright in the final
published source code repository.

References

[1] I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan, “Mining guidelines for architecting
robotics software,” Journal of Systems and Software, vol. 178, p. 110969, 2021.

6


	Introduction
	Methodology
	Phase 1: Mining repositories
	Phase 2: Finding Exemplars

	Results
	Discussion

